

| Kuwait University           | Math 101    | Date: | August 1, 2009 |
|-----------------------------|-------------|-------|----------------|
| Dept. of Math. & Comp. Sci. | Second Exam |       | Answer Key     |

- 1. Let  $f(x) = \sqrt[3]{x}$  and  $x_0 = 27$ , then  $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$  and  $\Delta x = 1$ . So,  $\sqrt[3]{28} = f(28) \simeq f(27) + f'(27) \Delta x = 3 + \frac{1}{27}(1) = \boxed{\frac{82}{27} = 3.037}$ .
- 2. At x = 0, y = 4. Differentiate implicitly with respect to x, we have:

$$\sec (x^2 y) \tan (x^2 y) (2xy + x^2 y') + \frac{2x + y'}{2\sqrt{x^2 + y}} - 1 = 0$$
  
Therefore,  $\boxed{y'|_{(0,4)} = 4} \Longrightarrow \boxed{m_\perp = -\frac{1}{4}}$ . Equation of normal line:  $\boxed{y = -\frac{1}{4}x + 4}$ .

3. 
$$S = 4\pi r^2 \implies \frac{dS}{dt} = 8\pi r \frac{dr}{dt} \implies -1 = 8\pi (2) \left. \frac{dr}{dt} \right|_{r=2} \implies \left. \frac{dr}{dt} \right|_{r=2} = \left| \frac{-1}{16\pi} \text{ cm/min} \right|_{r=2}$$
  
$$V = \frac{4}{3}\pi r^3 \implies \left. \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \implies \left. \frac{dV}{dt} \right|_{r=2} = 4\pi (2)^2 \left( \frac{-1}{16\pi} \right) = \left[ -1 \text{ cm}^3/\text{min} \right].$$

- 4. (b) Suppose  $x_1, x_2$  are two distinct (different) solutions of the equation  $(x_1 < x_2, say)$ . Let  $f(x) = \frac{3}{2}x + \sin x a$  and consider the interval  $[x_1, x_2]$ . f is continuous on  $[x_1, x_2]$ , f is differentiable on  $(x_1, x_2)$  and  $f(x_1) = 0 = f(x_2)$   $(x_1, x_2$  are two roots of f).  $f'(x) = \frac{3}{2} + \cos x$ . From Rolle's Theorem  $\exists c \in (x_1, x_2)$  such that f'(c) = 0, i.e.,  $\frac{3}{2} + \cos c = 0 \implies \cos c = -\frac{3}{2}$ , which is a contradiction with  $-1 \le \cos c \le 1$ .
- 5. Domain  $f = \mathbb{R} \{2\}$ . The points (4, 0)&(0, 1) lie on the curve (intercepts).
  - (a)  $\lim_{x \to 2^{\pm}} f(x) = \infty \implies \boxed{x=2}$  is a vertical asymptote.  $\lim_{x \to \pm \infty} f(x) = 0 \implies \boxed{y=0}$ is a horizontal asymptote. (The graph of f intersects its horizontal asymptote y = 0 at x = 4)
  - (b) f'(6) = 0. At x = 2, f' does not exist (f has infinite discontinuity).

| 1               | $(-\infty,2)$ | (2, 6)     | $(6,\infty)$ |
|-----------------|---------------|------------|--------------|
| sign of $f'(x)$ | +             | —          | +            |
| Conclusion      | $\nearrow$    | $\searrow$ | $\nearrow$   |

f is increasing on  $(-\infty, 2) \cup [6, \infty)$  and f is decreasing on (2, 6] $f(6) = -\frac{1}{8}$  is a local minimum of f.

(c) f''(8) = 0, and f'' does not exist at x = 2 where f is not continuous. (f has *infinite discontinuity*).

| Ι               | $(-\infty,2)$ | (2,8) | $(8,\infty)$ |                                                        |
|-----------------|---------------|-------|--------------|--------------------------------------------------------|
| sign of $f'(x)$ | +             | +     | —            | $\left(8, -\frac{1}{9}\right)$ is an inflection point. |
| Concavity       | CU            | CU    | CD           |                                                        |



| l   | x | $f\left(x ight)$                 | Classification of $x$ |
|-----|---|----------------------------------|-----------------------|
| (e) | 3 | 1                                | end point             |
| (6) | 6 | $-\frac{1}{8} = -\frac{25}{200}$ | critical number       |
| [   | 7 | $-rac{3}{25} = -rac{24}{200}$  | end point             |

f(3) = 1 is maximum value of f on [3,7] and  $f(6) = -\frac{1}{8}$  is minimum value of f on [3,7].