

- 1. Let $f(x) = \sqrt[3]{x}$ and $x_0 = 27$, then $f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$ and , $\Delta x = 1$. So, $\sqrt[3]{28} = f(28) \simeq$ $f(27) + f'(27) \Delta x = 3 + \frac{1}{27}(1) = \frac{82}{27}$ $= 3.037$.
- 2. At $x = 0$, $y = 4$. Differentiate implicitly with respect to x, we have:

$$
\sec(x^2y)\tan(x^2y)(2xy+x^2y') + \frac{2x+y'}{2\sqrt{x^2+y}} - 1 = 0
$$

Therefore, $\boxed{y'|_{(0,4)} = 4} \Longrightarrow \boxed{m_{\perp} = -\frac{1}{4}}$. Equation of normal line: $\boxed{y = -\frac{1}{4}x + 4}$.

3. $S = 4\pi r^2 \Longrightarrow \frac{dS}{dt} = 8\pi r \frac{dr}{dt} \Longrightarrow -1 = 8\pi (2) \left. \frac{dr}{dt} \right|_{r=2} \Longrightarrow \left. \frac{dr}{dt} \right|_{r=2} = \boxed{\frac{-1}{16\pi} \text{ cm/min}}$

$$
V = \frac{4}{3}\pi r^3 \implies \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \implies \frac{dV}{dt}\bigg|_{r=2} = 4\pi (2)^2 \left(\frac{-1}{16\pi}\right) = \boxed{-1 \text{ cm}^3/\text{min}}.
$$

- 4. (b) Suppose x_1, x_2 are two distinct (different) solutions of the equation $(x_1 < x_2,$ say). Let $f(x) = \frac{3}{2}x + \sin x - a$ and consider the interval $[x_1, x_2]$. f is continuous on $[x_1, x_2]$, f is differentiable on (x_1, x_2) and $f(x_1) = 0 = f(x_2)$ (x_1, x_2) are two roots of f). $f'(x) = \frac{3}{2} + \cos x$. From Rolle's Theorem $\exists c \in (x_1, x_2)$ such that $f'(c) = 0$, i.e., $\frac{3}{2} + \cos c = 0 \implies \cos c = -\frac{3}{2}$ $\frac{3}{2}$, which is a contradiction with $-1 \leq \cos c \leq 1$.
- 5. Domain $f = \mathbb{R} \{2\}$. The points $(4,0) \& (0,1)$ lie on the curve (intercepts).
	- (a) $\lim_{x\to 2^{\pm}} f(x) = \infty \implies x = 2$ is a vertical asymptote. $\lim_{x\to \pm \infty} f(x) = 0 \implies y = 0$ is a horizontal asymptote. (The graph of f intersects its horizontal asymptote $y = 0$ at $x = 4$)
	- (b) $f'(6) = 0$. At $x = 2$, f' does not exist (f has *infinite discontinuity*).

f is increasing on $(-\infty, 2) \cup [6, \infty)$ and f is decreasing on $(2, 6]$ $f(6) = -\frac{1}{8}$ $\frac{1}{8}$ is a local minimum of f.

(c) $f''(8) = 0$, and f'' does not exist at $x = 2$ where f is not continuous. (f has infinite discontinuity).

x

 $f(3) = 1$ is maximum value of f on [3, 7] and $f(6) = -\frac{1}{8}$ $\frac{1}{8}$ is minimum value of f on $[3, 7]$.